Coverage for src/bartz/jaxext/scipy/special.py: 95%

60 statements  

« prev     ^ index     » next       coverage.py v7.9.1, created at 2025-06-27 14:46 +0000

1# bartz/src/bartz/jaxext/scipy/special.py 

2# 

3# Copyright (c) 2025, Giacomo Petrillo 

4# 

5# This file is part of bartz. 

6# 

7# Permission is hereby granted, free of charge, to any person obtaining a copy 

8# of this software and associated documentation files (the "Software"), to deal 

9# in the Software without restriction, including without limitation the rights 

10# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 

11# copies of the Software, and to permit persons to whom the Software is 

12# furnished to do so, subject to the following conditions: 

13# 

14# The above copyright notice and this permission notice shall be included in all 

15# copies or substantial portions of the Software. 

16# 

17# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 

18# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

19# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 

20# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 

21# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

22# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 

23# SOFTWARE. 

24 

25"""Mockup of the :external:py:mod:`scipy.special` module.""" 

26 

27from functools import wraps 1ab

28 

29from jax import ShapeDtypeStruct, pure_callback 1ab

30from jax import numpy as jnp 1ab

31from scipy.special import gammainccinv as scipy_gammainccinv 1ab

32 

33 

34def _float_type(*args): 1ab

35 """Determine the jax floating point result type given operands/types.""" 

36 t = jnp.result_type(*args) 1ab

37 return jnp.sin(jnp.empty(0, t)).dtype 1ab

38 

39 

40def _castto(func, dtype): 1ab

41 @wraps(func) 1ab

42 def newfunc(*args, **kw): 1ab

43 return func(*args, **kw).astype(dtype) 1ab

44 

45 return newfunc 1ab

46 

47 

48def gammainccinv(a, y): 1ab

49 """Survival function inverse of the Gamma(a, 1) distribution.""" 

50 a = jnp.asarray(a) 1ab

51 y = jnp.asarray(y) 1ab

52 shape = jnp.broadcast_shapes(a.shape, y.shape) 1ab

53 dtype = _float_type(a.dtype, y.dtype) 1ab

54 dummy = ShapeDtypeStruct(shape, dtype) 1ab

55 ufunc = _castto(scipy_gammainccinv, dtype) 1ab

56 return pure_callback(ufunc, dummy, a, y, vmap_method='expand_dims') 1ab

57 

58 

59################# COPIED AND ADAPTED FROM JAX ################## 

60# Copyright 2018 The JAX Authors. 

61# 

62# Licensed under the Apache License, Version 2.0 (the "License"); 

63# you may not use this file except in compliance with the License. 

64# You may obtain a copy of the License at 

65# 

66# https://www.apache.org/licenses/LICENSE-2.0 

67# 

68# Unless required by applicable law or agreed to in writing, software 

69# distributed under the License is distributed on an "AS IS" BASIS, 

70# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

71# See the License for the specific language governing permissions and 

72# limitations under the License. 

73 

74import numpy as np 1ab

75from jax import debug_infs, lax 1ab

76 

77 

78def ndtri(p): 1ab

79 """Compute the inverse of the CDF of the Normal distribution function. 

80 

81 This is a patch of `jax.scipy.special.ndtri`. 

82 """ 

83 dtype = lax.dtype(p) 1ab

84 if dtype not in (jnp.float32, jnp.float64): 84 ↛ 85line 84 didn't jump to line 85 because the condition on line 84 was never true1ab

85 msg = f'x.dtype={dtype} is not supported, see docstring for supported types.' 

86 raise TypeError(msg) 

87 return _ndtri(p) 1ab

88 

89 

90def _ndtri(p): 1ab

91 # Constants used in piece-wise rational approximations. Taken from the cephes 

92 # library: 

93 # https://root.cern.ch/doc/v608/SpecFuncCephesInv_8cxx_source.html 

94 p0 = list( 1ab

95 reversed( 

96 [ 

97 -5.99633501014107895267e1, 

98 9.80010754185999661536e1, 

99 -5.66762857469070293439e1, 

100 1.39312609387279679503e1, 

101 -1.23916583867381258016e0, 

102 ] 

103 ) 

104 ) 

105 q0 = list( 1ab

106 reversed( 

107 [ 

108 1.0, 

109 1.95448858338141759834e0, 

110 4.67627912898881538453e0, 

111 8.63602421390890590575e1, 

112 -2.25462687854119370527e2, 

113 2.00260212380060660359e2, 

114 -8.20372256168333339912e1, 

115 1.59056225126211695515e1, 

116 -1.18331621121330003142e0, 

117 ] 

118 ) 

119 ) 

120 p1 = list( 1ab

121 reversed( 

122 [ 

123 4.05544892305962419923e0, 

124 3.15251094599893866154e1, 

125 5.71628192246421288162e1, 

126 4.40805073893200834700e1, 

127 1.46849561928858024014e1, 

128 2.18663306850790267539e0, 

129 -1.40256079171354495875e-1, 

130 -3.50424626827848203418e-2, 

131 -8.57456785154685413611e-4, 

132 ] 

133 ) 

134 ) 

135 q1 = list( 1ab

136 reversed( 

137 [ 

138 1.0, 

139 1.57799883256466749731e1, 

140 4.53907635128879210584e1, 

141 4.13172038254672030440e1, 

142 1.50425385692907503408e1, 

143 2.50464946208309415979e0, 

144 -1.42182922854787788574e-1, 

145 -3.80806407691578277194e-2, 

146 -9.33259480895457427372e-4, 

147 ] 

148 ) 

149 ) 

150 p2 = list( 1ab

151 reversed( 

152 [ 

153 3.23774891776946035970e0, 

154 6.91522889068984211695e0, 

155 3.93881025292474443415e0, 

156 1.33303460815807542389e0, 

157 2.01485389549179081538e-1, 

158 1.23716634817820021358e-2, 

159 3.01581553508235416007e-4, 

160 2.65806974686737550832e-6, 

161 6.23974539184983293730e-9, 

162 ] 

163 ) 

164 ) 

165 q2 = list( 1ab

166 reversed( 

167 [ 

168 1.0, 

169 6.02427039364742014255e0, 

170 3.67983563856160859403e0, 

171 1.37702099489081330271e0, 

172 2.16236993594496635890e-1, 

173 1.34204006088543189037e-2, 

174 3.28014464682127739104e-4, 

175 2.89247864745380683936e-6, 

176 6.79019408009981274425e-9, 

177 ] 

178 ) 

179 ) 

180 

181 dtype = lax.dtype(p).type 1ab

182 shape = jnp.shape(p) 1ab

183 

184 def _create_polynomial(var, coeffs): 1ab

185 """Compute n_th order polynomial via Horner's method.""" 

186 coeffs = np.array(coeffs, dtype) 1ab

187 if not coeffs.size: 1ab

188 return jnp.zeros_like(var) 1ab

189 return coeffs[0] + _create_polynomial(var, coeffs[1:]) * var 1ab

190 

191 maybe_complement_p = jnp.where(p > dtype(-np.expm1(-2.0)), dtype(1.0) - p, p) 1ab

192 # Write in an arbitrary value in place of 0 for p since 0 will cause NaNs 

193 # later on. The result from the computation when p == 0 is not used so any 

194 # number that doesn't result in NaNs is fine. 

195 sanitized_mcp = jnp.where( 1ab

196 maybe_complement_p == dtype(0.0), 

197 jnp.full(shape, dtype(0.5)), 

198 maybe_complement_p, 

199 ) 

200 

201 # Compute x for p > exp(-2): x/sqrt(2pi) = w + w**3 P0(w**2)/Q0(w**2). 

202 w = sanitized_mcp - dtype(0.5) 1ab

203 ww = lax.square(w) 1ab

204 x_for_big_p = w + w * ww * (_create_polynomial(ww, p0) / _create_polynomial(ww, q0)) 1ab

205 x_for_big_p *= -dtype(np.sqrt(2.0 * np.pi)) 1ab

206 

207 # Compute x for p <= exp(-2): x = z - log(z)/z - (1/z) P(1/z) / Q(1/z), 

208 # where z = sqrt(-2. * log(p)), and P/Q are chosen between two different 

209 # arrays based on whether p < exp(-32). 

210 z = lax.sqrt(dtype(-2.0) * lax.log(sanitized_mcp)) 1ab

211 first_term = z - lax.log(z) / z 1ab

212 second_term_small_p = ( 1ab

213 _create_polynomial(dtype(1.0) / z, p2) 

214 / _create_polynomial(dtype(1.0) / z, q2) 

215 / z 

216 ) 

217 second_term_otherwise = ( 1ab

218 _create_polynomial(dtype(1.0) / z, p1) 

219 / _create_polynomial(dtype(1.0) / z, q1) 

220 / z 

221 ) 

222 x_for_small_p = first_term - second_term_small_p 1ab

223 x_otherwise = first_term - second_term_otherwise 1ab

224 

225 x = jnp.where( 1ab

226 sanitized_mcp > dtype(np.exp(-2.0)), 

227 x_for_big_p, 

228 jnp.where(z >= dtype(8.0), x_for_small_p, x_otherwise), 

229 ) 

230 

231 x = jnp.where(p > dtype(1.0 - np.exp(-2.0)), x, -x) 1ab

232 with debug_infs(False): 1ab

233 infinity = jnp.full(shape, dtype(np.inf)) 1ab

234 neg_infinity = -infinity 1ab

235 return jnp.where( 1ab

236 p == dtype(0.0), neg_infinity, jnp.where(p == dtype(1.0), infinity, x) 

237 ) 

238 

239 

240################################################################