.. file generated automatically by lsqfitgp/docs/kernelsref.py .. currentmodule:: lsqfitgp .. _kernels: Kernels reference ================= This is a list of all the specific kernels implemented in :mod:`lsqfitgp`. Kernels are reported with a simplified signature where the positional arguments are `r` or `r2` if the kernel is isotropic, `delta` if it is stationary, or `x`, `y` for generic kernels, and with only the keyword arguments specific to the kernel. All kernels also understand the general keyword arguments of :class:`Kernel` (or their specific superclass), while there are no positional arguments when instantiating the kernel and the call signature of instances is always `x`, `y`. Example: the kernel :class:`GammaExp` is listed as ``GammaExp(r, gamma=1)``. This means you could use it this way:: import lsqfitgp as lgp import numpy as np kernel = lgp.GammaExp(loc=0.3, scale=2, gamma=1.4) x = np.random.randn(100) covmat = kernel(x[:, None], x[None, :]) On multidimensional input, isotropic kernels will compute the euclidean distance. In general non-isotropic kernels will act separately on each dimension, i.e., :math:`k(x_1,y_1,x_2,y_2) = k(x_1,y_1) k(x_2,y_2)`, apart from kernels defined in terms of the dot product. For all isotropic and stationary (i.e., depending only on :math:`x - y`) kernels :math:`k(x, x) = 1`, and the typical lengthscale is approximately 1 for default values of the keyword parameters, apart from some specific cases like :class:`Constant`. .. warning:: You may encounter problems with second derivatives for :class:`CausalExpQuad`, :class:`FracBrownian`, :class:`NNKernel`, :class:`Taylor`, and with first derivatives too for :class:`Wendland` (but only in more than one dimension). :class:`Color` stops working for :math:`n > 20`. The following kernels are not compatible with the JAX JIT: :class:`Bessel`, :class:`Matern`, :class:`Taylor`. Index ----- Isotropic kernels ^^^^^^^^^^^^^^^^^ * :class:`Bessel` * :class:`Cauchy` * :class:`CausalExpQuad` * :class:`Constant` * :class:`ExpQuad` * :class:`GammaExp` * :class:`Log` * :class:`Matern` * :class:`Maternp` * :class:`Wendland` * :class:`White` Stationary kernels ^^^^^^^^^^^^^^^^^^ * :class:`AR` * :class:`Celerite` * :class:`Circular` * :class:`Color` * :class:`Cos` * :class:`Expon` * :class:`Fourier` * :class:`Harmonic` * :class:`HoleEffect` * :class:`MA` * :class:`Periodic` * :class:`Pink` * :class:`Sinc` * :class:`StationaryFracBrownian` Other kernels ^^^^^^^^^^^^^ * :class:`BART` * :class:`BagOfWords` * :class:`BrownianBridge` * :class:`Categorical` * :class:`Decaying` * :class:`FracBrownian` * :class:`Gibbs` * :class:`Linear` * :class:`NNKernel` * :class:`OrnsteinUhlenbeck` * :class:`Rescaling` * :class:`Taylor` * :class:`Wiener` * :class:`WienerIntegral` Documentation ------------- .. autoclass:: AR(delta, phi=None, gamma=None, maxlag=None, slnr=None, lnc=None, norm=False) :members: :class-doc-from: class .. image:: kernelsref-AR.png .. image:: kernelsref-AR-samples.png .. autoclass:: BART(x, y, alpha=0.95, beta=2, maxd=2, splits=None) :members: :class-doc-from: class .. image:: kernelsref-BART.png .. image:: kernelsref-BART-samples.png .. autoclass:: BagOfWords(x, y) :members: :class-doc-from: class .. autoclass:: Bessel(r2, nu=0) :members: :class-doc-from: class .. image:: kernelsref-Bessel.png .. image:: kernelsref-Bessel-samples.png .. autoclass:: BrownianBridge(x, y) :members: :class-doc-from: class .. image:: kernelsref-BrownianBridge.png .. image:: kernelsref-BrownianBridge-samples.png .. autoclass:: Categorical(x, y, cov=None) :members: :class-doc-from: class .. autoclass:: Cauchy(r2, alpha=2, beta=2) :members: :class-doc-from: class .. image:: kernelsref-Cauchy.png .. image:: kernelsref-Cauchy-samples.png .. autoclass:: CausalExpQuad(r, alpha=1) :members: :class-doc-from: class .. image:: kernelsref-CausalExpQuad.png .. image:: kernelsref-CausalExpQuad-samples.png .. autoclass:: Celerite(delta, gamma=1, B=0) :members: :class-doc-from: class .. image:: kernelsref-Celerite.png .. image:: kernelsref-Celerite-samples.png .. autoclass:: Circular(delta, tau=4, c=0.5) :members: :class-doc-from: class .. image:: kernelsref-Circular.png .. image:: kernelsref-Circular-samples.png .. autoclass:: Color(delta, n=2) :members: :class-doc-from: class .. image:: kernelsref-Color.png .. image:: kernelsref-Color-samples.png .. autoclass:: Constant(x, y) :members: :class-doc-from: class .. autoclass:: Cos(delta) :members: :class-doc-from: class .. image:: kernelsref-Cos.png .. image:: kernelsref-Cos-samples.png .. autoclass:: Decaying(x, y) :members: :class-doc-from: class .. image:: kernelsref-Decaying.png .. image:: kernelsref-Decaying-samples.png .. autoclass:: ExpQuad(r2) :members: :class-doc-from: class .. image:: kernelsref-ExpQuad.png .. image:: kernelsref-ExpQuad-samples.png .. autoclass:: Expon(delta) :members: :class-doc-from: class .. image:: kernelsref-Expon.png .. image:: kernelsref-Expon-samples.png .. autoclass:: Fourier(delta, n=2) :members: :class-doc-from: class .. image:: kernelsref-Fourier.png .. image:: kernelsref-Fourier-samples.png .. autoclass:: FracBrownian(x, y, H=0.5, K=1) :members: :class-doc-from: class .. image:: kernelsref-FracBrownian.png .. image:: kernelsref-FracBrownian-samples.png .. autoclass:: GammaExp(r2, gamma=1) :members: :class-doc-from: class .. image:: kernelsref-GammaExp.png .. image:: kernelsref-GammaExp-samples.png .. autoclass:: Gibbs(x, y, scalefun= at 0x130bc8670>) :members: :class-doc-from: class .. image:: kernelsref-Gibbs.png .. image:: kernelsref-Gibbs-samples.png .. autoclass:: Harmonic(delta, Q=1) :members: :class-doc-from: class .. image:: kernelsref-Harmonic.png .. image:: kernelsref-Harmonic-samples.png .. autoclass:: HoleEffect(delta) :members: :class-doc-from: class .. image:: kernelsref-HoleEffect.png .. image:: kernelsref-HoleEffect-samples.png .. autoclass:: Linear(x, y) :members: :class-doc-from: class .. image:: kernelsref-Linear.png .. image:: kernelsref-Linear-samples.png .. autoclass:: Log(r) :members: :class-doc-from: class .. image:: kernelsref-Log.png .. image:: kernelsref-Log-samples.png .. autoclass:: MA(delta, w=None) :members: :class-doc-from: class .. image:: kernelsref-MA.png .. image:: kernelsref-MA-samples.png .. autoclass:: Matern(r2, nu=None) :members: :class-doc-from: class .. image:: kernelsref-Matern.png .. image:: kernelsref-Matern-samples.png .. autoclass:: Maternp(r2, p=None) :members: :class-doc-from: class .. image:: kernelsref-Maternp.png .. image:: kernelsref-Maternp-samples.png .. autoclass:: NNKernel(x, y, sigma0=1) :members: :class-doc-from: class .. image:: kernelsref-NNKernel.png .. image:: kernelsref-NNKernel-samples.png .. autoclass:: OrnsteinUhlenbeck(x, y) :members: :class-doc-from: class .. image:: kernelsref-OrnsteinUhlenbeck.png .. image:: kernelsref-OrnsteinUhlenbeck-samples.png .. autoclass:: Periodic(delta, outerscale=1) :members: :class-doc-from: class .. image:: kernelsref-Periodic.png .. image:: kernelsref-Periodic-samples.png .. autoclass:: Pink(delta, dw=1) :members: :class-doc-from: class .. image:: kernelsref-Pink.png .. image:: kernelsref-Pink-samples.png .. autoclass:: Rescaling(x, y, stdfun=None) :members: :class-doc-from: class .. autoclass:: Sinc(delta) :members: :class-doc-from: class .. image:: kernelsref-Sinc.png .. image:: kernelsref-Sinc-samples.png .. autoclass:: StationaryFracBrownian(delta, H=0.5) :members: :class-doc-from: class .. image:: kernelsref-StationaryFracBrownian.png .. image:: kernelsref-StationaryFracBrownian-samples.png .. autoclass:: Taylor(x, y) :members: :class-doc-from: class .. image:: kernelsref-Taylor.png .. image:: kernelsref-Taylor-samples.png .. autoclass:: Wendland(r, k=0, alpha=1) :members: :class-doc-from: class .. image:: kernelsref-Wendland.png .. image:: kernelsref-Wendland-samples.png .. autoclass:: White(x, y) :members: :class-doc-from: class .. image:: kernelsref-White.png .. image:: kernelsref-White-samples.png .. autoclass:: Wiener(x, y) :members: :class-doc-from: class .. image:: kernelsref-Wiener.png .. image:: kernelsref-Wiener-samples.png .. autoclass:: WienerIntegral(x, y) :members: :class-doc-from: class .. image:: kernelsref-WienerIntegral.png .. image:: kernelsref-WienerIntegral-samples.png